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Abstract

We introduce a new facet-generating procedure for the stable set polytope, based
on replacing (k− 1)-cliques with certain k-partite graphs, which subsumes previous
procedures based on replacing vertices with stars, and thus also many others in the
literature. It can be used to generate new classes of facet-defining inequalities.
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1 Introduction

Let G = (V,E) be a simple, finite, undirected graph. A subset S ⊆ V is a
stable set if no two vertices of S are adjacent. The stable set polytope of G is
the convex hull of the incidence vectors of all the stable sets of G.

STAB(G) = conv{x ∈ {0, 1}n : xv + xu ≤ 1,∀{v, u} ∈ E}

The facial structure of STAB(G) has been extensively studied, not only be-
cause stable set problems have applications in various fields, but also because
they model other important combinatorial problems, such as set packing, set
partitioning [5] and vertex coloring [3].

In the 1970’s it was shown that facet-defining inequalities for STAB(H),
the stable set polytope of a vertex induced subgraph H of G, can be trans-
formed into facet-defining inequalities for STAB(G) [6,5]. Since then, other
procedures based on graph-theoretical transformations, such as subdividing
edges [7], subdividing stars [1], replacing vertices with stars [2] and replacing
edges with gears [4], have been described.

In this paper, we introduce a new facet-generating procedure, based on re-
placing (k−1)-cliques with certain k-partite graphs, which subsumes previous
procedures based on replacing vertices with stars, and thus also many others,
including subdividing edges and subdividing stars (see [2] for details).

The procedure comes naturally from the fact that, as we shall prove, certain
faces of STAB(G) are affinely isomorphic to the stable set polytopes of other
smaller graphs. We can then use an extended version (introduced in Section
2) of the sequential lifting procedure [6,5] to transform facets of these faces
into facets of STAB(G).

2 Preliminaries

Consider a polytope P and one of its faces F . Facet-defining inequalities for F
can be transformed into facet-defining inequalities for P in the following way.
First, we find a sequence of polytopes F1, . . . , Fk such that F1 = F , Fk = P and
Fi is a facet of Fi+1, for i = 1, . . . , k−1; then we repeatedly apply the following
theorem. Note that different sequences may yield different inequalities.

Theorem 2.1 Let P be a convex polytope and S a finite set such that P =
conv(S). If cx ≤ d is facet-defining for P and πx ≤ π∗ is facet-defining for
{x ∈ P : cx = d}, then πx + α(cx − d) ≤ π∗ is facet-defining for P , where
α = max

{
π∗−πx
cx−d : x ∈ S, cx < d

}
.



Proof. Let x̄ ∈ S. We know that cx̄ ≤ d. If cx̄ = d, then x̄ ∈ {x ∈ P :
cx = d}, and πx̄ + α(cx̄ − d) = πx̄ ≤ π∗. If cx̄ < d, then α ≥ π∗−πx̄

cx̄−d , and
πx̄ + α(cx̄ − d) ≤ π∗. Therefore, the inequality is valid for P . Take a set
{x1, . . . , xk} ⊆ {x ∈ P : cx = d, πx = π∗} of dim(P )− 1 affinely independent
points, and take x0 ∈ {x ∈ S : cx < d} such that α = π∗−πx0

cx0−d . We know that

x0 is not an affine combination of x1, . . . , xk. Therefore, {x0, . . . , xk} ⊆ {x ∈
P : πx+ α(cx− d) = π∗} contains dim(P ) affinely independent points. 2

Two polytopes P1 ⊆ Rr and P2 ⊆ Rs are affinely isomorphic, denoted by
P1
∼= P2, if there is an affine map f : Rr → Rs that is a bijection between the

points of the two polytopes. Facet-defining inequalities for P1 can be trivially
transformed into facet-defining inequalities for P2.

In the following section, we also need some new concepts related to hyper-
graphs. We say that two hyperedges are strongly adjacent if both have same
size k and share exactly k − 1 vertices. A hypergraph H = (V, E) is a strong
hypertree either if E = {V } or if there is a leaf v ∈ V incident to a hyperedge
e ∈ E such that e is strongly adjacent to some other hyperedge of H and such
that (V \ {v}, E \ {e}) is also a strong hypertree. A strong hyperpath is a
strong hypertree with exactly two leaves. We say that the strong hyperpath
connects the leaves. Similarly to ordinary trees, it can be shown that every
strong hypertree with n vertices is a k-uniform hypergraph with n − k + 1
hyperedges, that its incidence matrix has full rank, and that there is a strong
hyperpath connecting each pair of non-adjacent vertices.

3 The procedure

Let Q be the set of maximal cliques of G, and C(G) = (V,Q) be the clique-
hypergraph of G. Let T = (VT ,QT ) ⊆ C(G) be a k-uniform strong hypertree
such that the subgraph of G induced by VT is k-partite with vertex classes
V1, . . . , Vk, and such that no vertex in V0 := V \VT has neighbors in all classes
V1, . . . , Vk. Consider the face FT := {x ∈ STAB(G) : xQ = 1,∀Q ∈ QT},
where xR is a shorthand for

∑
r∈R xr, for R ⊆ V . We have the two following

lemmas.

Lemma 3.1 dim(FT ) = |V | − |QT |.

Proof. Because the incidence matrix of T has rank |QT |, it follows that
dim(FT ) ≤ |V | − |QT |. Take i ∈ {1, . . . , k} and let xi be the incidence vector
of Vi. Clearly, xi ∈ STAB(G). We prove that xiQ = 1, for all Q ∈ QT . Suppose
there exists Q such that xiQ = 0. By the pigeonhole principle, two vertices



of Q belong to some other class Vj, but this contradicts the fact that Vj is a
stable set. Therefore xi ∈ FT . Now take v ∈ V0. There exists i ∈ {1, . . . , k}
such that v is not adjacent to any vertex in Vi. Let yv = xi + ev. It is easy
to see that yv ∈ FT . The points {xi}ki=1 ∪ {yv}v∈V0 are affinely independent.
This proves that dim(FT ) ≥ |V0|+ k − 1 = |V | − |QT |. 2

Lemma 3.2 If x ∈ FT then xu = xv, ∀u, v ∈ Vi, ∀i ∈ {1, . . . , k}.

Proof. There is a strong hyperpath Q1, . . . , Qp in T connecting u, v. We
prove the result by induction on p. If p = 2, then xQ1 − xQ2 = xu − xv = 0.
If p > 2 then there exists w ∈ Vi ∩ Q2 such that w 6= u, v. As Q1, Q2 is a
strong hyperpath with 2 hyperedges connecting u,w, we have xu = xw. Let
s = max{j : w ∈ Qj}. Then Qs, . . . , Qp is a strong hyperpath with less
than p hyperedges which connects two vertices of Vi. By inductive hypothesis,
xw = xv. Therefore, xu = xv. 2

Thus, each class V1, . . . , Vk can be seen as a single vertex. Furthermore,
given S ⊆ V such that the incidence vector of S belongs to FT , we can see

that Vk ⊆ S if and only if
(⋃k−1

i=1 Vi

)
∩ S = ∅. This leads to the following

construction: Let GT be the graph obtained from G by removing the vertices
of Vk and by contracting Vi into a vertex vi ∈ Vi, for i = 1, . . . , k − 1.

Lemma 3.3 If NG(Vk) ∩ V0 = ∅ then FT ∼= STAB(GT ).

Proof. STAB(GT )→ FT : Take y ∈ STAB(GT ). For each u ∈ V , set xu = yu
if u ∈ V0; xu = yvi

if u ∈ Vi, i ∈ {1, . . . , k−1}; and xu = 1−
∑k−1

i=1 yvi
if u ∈ Vk.

We prove that x ∈ FT . Let Q ∈ QT . As Q contains exactly one vertex of each
V1, . . . , Vk, we have xQ =

∑k−1
i=1 yvi

+ (1−
∑k−1

i=1 yvi
) = 1. Take {a, b} ∈ E. It

is straightforward to check that xa + xb ≤ 1. Therefore x ∈ FT .

FT → STAB(GT ): Take x ∈ FT . For each v ∈ V0, set yv = xv, and for each
i ∈ {1, . . . , k − 1}, set yvi

= xvi
. Take {a, b} ∈ E(GT ). It is straightforward

to check that ya + yb ≤ 1. Therefore y ∈ STAB(GT ). 2

We can now use the procedure outlined in Section 2 to transform facet-
defining inequalities for STAB(GT ) into facet-defining inequalities for STAB(G).

Theorem 3.4 Suppose NG(Vk)∩V0 = ∅. Let Q1, . . . , Qr be an ordering of QT
such that the hypergraph induced by Qs, . . . , Qr is also a strong hypertree, for
all s ≤ r. If

∑
v∈V0

πvxv +
∑k−1

i=1 πvi
xvi
≤ π∗ is facet-defining for STAB(GT ),

then
∑

v∈V0
πvxv +

∑k−1
i=1 πvi

xvi
+
∑r

i=1 αi(xQi
− 1) ≤ π∗ is facet-defining for
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Fig. 1. Examples of Theorem 3.4

STAB(G), where, for each t ∈ {1, . . . , r},

αt := max
{∑

v∈V0
πvxv +

∑k−1
i=1 πvi

xvi
+
∑t−1

i=1 αi(xQi
− 1) : x ∈ Pt

}
− π∗

Pt :=

x ∈ STAB(G) :
xQt = 0

xQi
= 1, for i = t+ 1, . . . , r

 .

Proof. For each t ∈ {0, . . . , r}, let

Ft := {x ∈ STAB(G) : xQi
= 1, for i = t+ 1, . . . , r}

ft(x) :=
∑

v∈V0
πvxv +

∑k−1
i=1 πvi

xvi
+
∑t

i=1 αi(xQi
− 1)

We prove by induction that ft(x) ≤ π∗ is facet-defining for Ft. By Lemma 3.3,
F0
∼= STAB(GT ), and f0(x) ≤ π∗ is facet-defining for F0. Take t ∈ {1, . . . , r}.

By Lemma 3.1, dim(Ft−1) = dim(Ft)− 1, and because Ft−1 = {x ∈ Ft : xQt =
1}, we know that xQt ≤ 1 is facet-defining for Ft. By the inductive hypothesis,
ft−1(x) ≤ π∗ is facet-defining for Ft−1. We can use Theorem 2.1 to conclude
that ft−1(x) + αt(xQt − 1) = ft(x) ≤ π∗ is facet-defining for Ft. 2

Example 3.5 Let G be the graph of Figure 1(a), and let T be the strong
hypertree in bold. We have V0 = {6, 7, 8}, V1 = {2, 4}, V2 = {3, 5}, V3 = {1}.
The graph GT is shown in Figure 1(d). The clique inequality x4 + x5 +



x6 + x7 + x8 ≤ 1 is facet-defining for STAB(GT ). Let Q1 = {1, 2, 3}, Q2 =
{1, 3, 4}, Q3 = {1, 4, 5}. Applying Theorem 3.4, we obtain the facet-defining
inequality 2x1 + x2 + 2x3 + 2x4 + x5 + x6 + x7 + x8 ≤ 3.

Example 3.6 We illustrate how Theorem 3.4 subsumes previous procedures
with an example from [2]. Let G be the graph of Figure 1(b), and let T be the
star in bold. Note that the conditions of the first part of Theorem 3.6 of [2]
are not satisfied. The graph GT is shown in Figure 1(e). The wheel inequality
3x4 +

∑11
i=5 xi ≤ 3 is facet-defining for STAB(GT ). Using different orderings

of QT , we obtain the three following facet-defining inequalities for STAB(G):

2x1 + x2 + 2x3 + 2x4 +
∑11

i=5 xi ≤ 5

2x1 + 2x2 + x3 + 2x4 +
∑11

i=5 xi ≤ 5

2x1 + 2x2 + 2x3 + x4 +
∑11

i=5 xi ≤ 5

Example 3.7 Finally, we illustrate how Theorem 3.4 can be used to generate
facet-defining inequalities for antiwebs and other similar graphs. Let G be the
graph of Figure 1(c), and let T be the strong hypertree in bold. The graph GT

is shown in Figure 1(f). The clique inequality x1 + x3 + x7 + x8 ≤ 1 is facet-
defining for STAB(GT ). Applying Theorem 3.4, we obtain the facet-defining
inequality x1 + x2 + 2x3 + 2x4 + x5 + x6 + x7 + x8 ≤ 3.
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